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Helmholtz stated and Korteweg proved that of all divergenceless velocity fields 
in a domain, with prescribed values on the boundary, the solution of the Stokes 
equation minimizes the rate of viscous energy dissipation. Hill & Power and also 
Kearsley proved the corresponding reciprocal maximum principle involving the 
stress tensor. We prove generalizations of both these principles to the flow of a 
liquid containing one or more solid bodies and drops of another liquid. The 
essential point in doing this is to take account of the motion of the solids or drops, 
which must be determined along with the flow. We illustrate the use of these 
principles by deducing several consequences from them. In particular we obtain 
upper and lower bounds on the effective coefficient of viscosity and a lower bound 
on the sedimentation velocity of suspensions of any concentration. The results 
involve the statistical properties of the distribution of suspended particles or 
drops. Graphs of the bounds are shown for special cases. For very low concentra- 
tions of spheres, both bounds on the effective viscosity coefficient are the same, 
and agree with the results of Einstein and Taylor. 

1. Introduction 
Helmholtz (1868) studied the slow steady (Stokes) flow of an incompressible 

viscous fluid with a given velocity on its boundary and subject to forces derivable 
from a single valued potential. He proved that the rate of energy dissipation for 
such a flow is stationary in a certain class of flows. However he stated that it was 
a minimum, which Korteweg (1883) then proved. Rayleigh (1913) obtained a 
similar result for non-slow flows with harmonic vorticity. Much later Hill & 
Power (1956) and then Kearsley (1960) proved a maximum principle comple- 
mentary to the minimum principle of Helmholtz and Korteweg. We shall 
generalize these principles to Stokes flows containing one or more solid bodies, 
drops of another liquid, or gas bubbles whose motions are unspecified, and which 
must therefore be determined along with the flow. Then we shall apply these new 
principles to obtain bounds on the effective viscosity and sedimentation velocity 
of a suspension of any concentration. 
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First we shall rederive the previous extremum principles under more general 
boundary conditions than has been done before, a possibility that Helmholtz and 
Hill & Power indicated. We shall also relax the smoothness requirements on the 
comparison fiows. This is of some practical value because it makes it easier to 
construct comparison flows. In  addition, we shall admit forces not derivable from 
a potential, as Helmholtz did, and obtain modified extremum principles. They 
reduce to the previous ones when the forces are derivable from apotential. Then we 
shall formulate the problem of the Stokes flow of a fluid containing moving solid, 
liquid or gaseous objects whose motions must be determined simultaneously with 
the flow. For this problem weshallthenprovethegeneralizedextremumprinciples. 

From these principles we shall prove the uniqueness of the Stokes flow of a 
fluid containing moving objects, as Helmholtz and Korteweg did in the special 
case they considered. We shall also show that the exact steady or unsteady 
Navier-Stokes flow yields a larger drag and torque on a body than does the 
Stokes flow. Many other applications of these principles are possible, and some 
of them have been indicated by Hill & Power. We shall also explain the bearing 
of the minimum principle on the principle of the minimum rate of entropy 
production, which is used in irreversible thermodynamics. 

An account of most of the previous work on Stokes flows, with applications to 
suspensions, is contained in the recent book of Happel & Brenner (1965). 

Hashin (1962) and Prager (1963) have tried to obtain bounds on the viscosity 
of a suspension, Hashin by using the Helmholtz minimum principle and Prager 
by using the principle of the minimum rate of entropy production, which is 
equivalent to the Helmholtz principle for viscous flow. Hashin (1967) also tried 
to obtain bounds on the viscosity of a mixture by using other variational 
principles. None of these principles takes account of the fact that the motion 
of the suspended particles or droplets is unknown. Valid bounds cannot be 
obtained in this way unless the particle motions are prescribed. 

2. A minimum principle for the Stokes flow 
Let us consider the flow of a viscous incompressible fluid in a domain V 

bounded by a surface S which is divided into three parts, S,, S, and 8,. We assume 
that S is smooth enough for Gauss’ theorem to be applicable. Let u(z), p(x), ,u 
and f (x) denote respectively the fluid velocity, pressure, viscosity coefficient and 
external force per unit volume. In  terms of these quantities we define the strain 
rate tensor eij[u] and the stress tensor rij[u] by 

eijtu1 = + b { , j + U j , { ) ,  (2.1) 

rij[u] = 2peij[u] - p  Sij. (2.2) 
Here and elsewhere uui denotes the ith Cartesian component of u, ui, denotes its 
derivative with respect to the Cartesian co-ordinate x j  and a term bearing a 
repeated index is to be summed over the values 1 , 2  and 3 of that index. 

We wish to determine u and p in V satisfying the following conditions: 
UiJ = 0, x in  V ;  (2.3) 

rij, j +fi = 0, xin  V ;  (2.4) 
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= 9i(X), x on S,; (2.5) 

niui(x) = h(x),  x on S,; (2.6) 

nirij-ninknmTktn = Pi,niPi = 0 ,  x on S2; (2.7) 

x on S,. ( 2 . 8 )  n.7.. = y .  
3 23 a )  

In  (2.6)-(2.8) ni denotes the ith component of the unit normal to S pointing out 
of V .  Equation (2.3) expresses the incompressibility of the fluid and (2.4) is the 
Stokes equation, which results from the Navier-Stokes equation when the 
inertia terms u1 + (u. V) u are omitted. These terms can be validly omitted when 
the flow is so slow and changes so slowly that viscous forces are more important 
than inertial forces. Equation (2.5) specifies that the ith component of the velocity 
must be gi(x) on S,, (2.6) specifies that the normal component of velocity must 
be hfx) on S,, (2.7) specifies that the tangential component of normal stress equals 
Pi on S, and (2 .8 )  specifies that the normal stress on S, equals yi. We may think of 
S, as the surface of contact between the fluid and a solid while S, may be a surface 
of contact with a gas. A solution u(x)  of (2.3)-(2.8) will be called a Stokes flow. 

The rate per unit volume at  which mechanical energy is converted into heat is 
rij[u] eij[u]. The volume integral of this quantity is defined to be the dissipation 
rate D[u]. By virtue of (2.3) this is 

P 

D[u] = 2 , ~ ( e ~ ~ [ u ] ) ~  d V .  J v  (2.9) 

The excess dissipation rate DJu] is defined to be the rate of energy dissipation 
minus twice the power of the external body forces and given surface tractions. 
Upon using (2.7) and (2 .8 )  we can write 

DJU] = D[u]-2 fiUidV--2 /3,u,dS-2 yiuidS* (2.10) 
sv s, ss. 

We shall consider flows for which all the integrals that occur exist. For domains 
which extend to infinity we also require the vanishing of those surface integrals 
over the sphere at  infinity which arise in using Gauss’ theorem. We shall not 
mention these conditions explicitly again. 

Our aim is to show that the Stokes flow minimizes D,[u] in a certain class of 
functions. To do so we need the following lemma: 

Lemma 1. Let V be a domain bounded by a surface S within which is defined 
a continuously differentiable flow u ( x )  satisfying (2.3) and (2.4). Let v(x)  be a 
continuous flow defined in V ,  possessing piecewise continuous derivatives, and 
satisfying (2.3). Then 

DJu + v] = DJu] + D[v] + 2 wi rij[u] ni dS - 2 Pi wi dX - 2 

(2.11) 

(2.12) 

ss Is2 

S V  

Proof. From (2.1) we have 

e&[u + v] = etj[u] + et[v]  + 2eii[u] eij[v]. 
Now from (2.9) and (2.12) we obtain 

D[u + v] = D[u] + D[v] + 4peij[u] eij[w] d V .  (2.13) 

1-2 
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By noting that eij = eji and using vi,{ = 0 and (2.4) we also have the relation 
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4peij[v] eij[u] = 2p(vi, + vj, i) eij[u] 
= 4peij[u] vi, 
= 2rij[u] vi, 
= 2aj(vi7ij[u])+2fivi. (2.14) 

Using (2.13) and (2.14) in (2.10) we find 

D,[U + v] = D,[~I + ~ [ v ]  + 2 1 aj(vi Tij[U-j) as - 2 IS2pi  wi as - 2 Is, yi vi as. 
V 

(2.15) 

We now use Gauss' theorem to convert the first integral in (2.15) to the first 
surface integral in (2.11). In doing so we must take account of the surfaces across 
which the derivatives of v are discontinuous. Since v is continuous across these 
surfaces, the surface integrals over the two sides of each such surface cancel. This 
proves the lemma. 

We can now state and prove the following theorem: 
Theorewb 1. (Minimum Principle.) Let u(x) be a continuously differentiable 

solution of (2.3)-(2.8). Let w(x) be any continuous and piecewise continuously 
differentiable flow defined in V satisfying (2.3), (2.5) and (2.6). Then 

DJWI 2 D,[Ul. (2.16) 

The inequality holds in (2.16) if w(x)-u(x) is not a rigid body motion. Thus 
inequality holds if w(x) =i= u(x) provided S, is not empty or provided no rigid body 
motion of the fluid is possible in V with vanishing normal velocity on 8,. 

Proof. If we set w = u+v then v satisfies (2.3) and vanishes on Sl while nivi 
vanishes on S,. Therefore (2.11) applies. Now in (2.11) the surface integral over 
S, vanishes because vi = 0 there. On S, the integrand of the first surface integral 
becomes vi(pi i- ni nk n, rkm), and this reduces to vipi since ni vi = 0 on S,. Twice 
the integral of this over S, cancels the fourth term in (2.11). The remaining 
integrals in (2.11) also cancel because of (2.8). Thus (2.11) becomes 

(2.17) 

Since D[v] 2 0, this yields (2.16). Equality holds in (2.17) if and only if D[v] = 0,  
which is so only if v is a rigid body motion. Then since v = 0 on S,, it follows that 
v E 0 provided 8, is not empty. When Sl is empty then v = 0 if no rigid motion is 
possible in V with vanishing normal velocity on 8,. This completes the proof of 
the theorem. 

For the case in which S, and S, are absent, Helmholtz showed that D, is 
stationary for the Stokes flow and Korteweg proved that it is a minimum. 

D,[u + v] = D,[ul+ m v 1 .  

3. A maximum principle for the Stokes flows 
Theorem 1 enables us to get upper bounds on D,[u] for a Stokes flow u. We shall 

now show how to get lower bounds on D,[u] by deriving a maximum principle for 
the Stokes flows. This principle is related to the minimum principle by means of 
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the Friedrichs (1929) transformation (Courant & Hilbert 1953).  It involves a 
functional H[cii] of a tensor vii, defined by 

We shall first prove that H is related to D, as follows: 

H[7ij[UII = DfLUl. (3 .2 )  

This equality states that when rij is the stress tensor (2 .2)  corresponding to 
a Stokes flow u satisfying (2.3)-(2.8) then H[rij] is equal to  De[u]. 

To prove (3 .2)  we use (2 .5 )  and (2 .6 )  to write the integrands of the surface 
integrals in ( 3 . 1 )  as uinirij and uknkninjrii respectively. By (2 .7 )  

u k  nk ni ni rii = u k  n, 7 k r  - pk uk. 
We now add and subtract to the right side of ( 3 . 1 )  the integral ofuknr rkr over 8,. 
Then we apply Gauss' theorem to the integrals of uk n, rkr in (3 .1 )  and obtain 

H[rij[u]] = - - (rii - Qrkk d 
2P 's v P 

- 2 j  S* p i u i d 8 - 2 j  S. uinjrijdS. ( 3 . 3 )  

Upon differentiating the second integrand it becomes ui, rij + ui rij, i. The first of 
these terms is equal to 2p(eiJ2 as we see from (2 .1 )  to (2 .3 ) .  The second term is 
-ui fi, according to (2 .4 ) .  The first integrandin (3 .3 )  is equal to ( 2 , ~ e ~ ~ ) ~  while the 
last integrand is uiyi by (2 .8 ) .  Thus (3 .3 )  becomes 

n 

From the definition (2 .10 )  we see that the right side of (3 .4 )  is D,[u], which proves 
(3 .2) .  

In order to prove the maximum principle we shall need the following lemma: 
Lemma 2 .  Let V be a domain bounded by a surface S within which is defined a 

continuously differentiable flow u(x) ,  satisfying (2 .3 ) ,  in terms of which rij[u] 
is given by (2 .2) .  Let a i i (x )  be a piecewise continuous and piecewise continuously 
differentiable tensor defined in V and satisfying the conditions 

0-.. 23 = Vji' (3 .5 )  
n; gij continuous across the discontinuity surfaces of rij. (3 .6 )  

Then 

In  ( 3 . 6 )  n; denotes the unit normal to a discontinuity surface of uij. 
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Proof. From (3.1) we have 

(3.8) 

By using (2.1)-(2.3) and (3.5) we can rewrite the integrand in the last integral as 
follows : 

( ~ ~ ~ [ u ]  - $ T ~ ~ [ U ]  Sij) (gii - 4gmm Sij) = 2peii[u] (gij - to-mm Sij) 
= dui ,  j + uj, i) W i j  

= 2pui, j uij 

= 2p aj(ui vij) - 2pu, aj gij. (3.9) 

Upon substituting the last expression into (3.8) and using Gauss' theorem to 
convert the integral of aj(ui gii) to a, surface integral, we obtain (3.7). There are 
other surface integrals over the surfaces of discontinuity of gtj, but because of 
(3.6) the integrals over the two sides of each of these surfaces cancel. This proves 
the lemma. 

We can now state and prove the maximum principle. 
Theorem 2. (Maximum Principle.) Let u ( x )  be a continuously differentiable 

solution of (2.3)-(2.8). Let vii(x) be any piecewise continuous and piecewise 
continuously differentiable tensor defined in V satisfying ( 3 4 ,  (3.6), (2.4), (2.7) 
and (2.8). Then (3.10) 

Inequality holds in (3.10) unless rii = ~ ~ ~ [ u ]  + qo Sij, where qo is a constant which 
is zero unless S, is absent. 

Proof. Let us set vii = T ~ ~ [ U ]  +pij .  Then pii is piecewise continuous and piece- 
wise continuously differentiable in V and satisfies ( 3 4 ,  (3.6), (2.7) and (2.8) with 
pi = yi = 0, and (2.4) with fi = 0, i.e. pij,i = 0. Therefore (3.7) holds with pii 
instead of rii. From (2.5) the first surface integral in (3.7) vanishes and, because 
pij,i = 0, the second volume integral vanishes. The second surface integral 
vanishes in virtue of (2.6) and (2.7) with pi = 0, since 

(hni - ui) nipii = ( hni - ui) ni nk nmpkm = (hnl - ui ni) nk n, pkm = 0. 

The last integral vanishes by (2.8) with yi = 0. Thus (3.7) becomes 

H[7{j[U] +piJ = H[7ij[uIl-- (p+j - Q P k k  8ij)ZdV. (3.11) 
2P ' 1  v 

The left side of (3.11) is H[crij], the integral term is negative or zero and 

H[~i j [u I l  = De[uI 
according to (3.2). Thus (3.11) implies (3.10). The proof of the theorem is com- 
pleted by noting that the integral in (3.11) vanishes if and only if pii = q(x) Sij and, 
since pZi,$ = 0, it follows that q(z) = q,, = constant. Furthermore, since nipij = 0 
on X,, we have pb = 0 unless X, is absent. 

Theorems 1 and 2 yield both upper and lower bounds on De[u], 

H[g,jl < DJuI < DJWI. (3.12) 
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Before considering the applications of these bounds, we shall obtain similar 
bounds for flows containing moving rigid bodies, droplets or gas bubbles. A special 
case of theorem 2 in which S, and S, are absent, gi = 0 and f i  = 0, was proved by 
Hill & Power. 

4. A minimum principle for slow flows containing solid or fluid 
particles 

We intend to apply our extremum principles to flows of suspensions, which are 
fluids containing solid particles or drops of a different fluid. In  such flows the 
velocities of the particles or drops must be determined simultaneously with the 
flow. Thus the velocity of the fluid at  the surface of a particle or drop is not known 
in advance. As a consequence our previous theorems are not applicable to such 
flows. We shall now derive new extremum principles which are applicable. 

Let us begin by formulating the problem of the slow motion of anincompressible 
viscous fluid Containing N fluid drops with surfaces s,, . . . , snr and Mrigid particles 
with surfaces slV+,, . . . , s*,+~. Then the domain V is bounded by these N + M 
surfaces and by the surfaces S,, S, and S,. We shall suppose that the motion of 
each surface 8k is a rigid body motion characterized by the velocity Uk) of some 
reference point inside the surface and an angular velocity dk) about an axis 
through this point. This means that change of shape of the fluid drops is not 
considered, which is valid when the surface tension is large enough. Let d k ) ( x ) ,  
p(&)(x), 7$) (x ) ,  ,dk) andf(&)(x) denote respectively the fluid velocity, pressure, stress 
tensor, viscosity coefficient and external force per unit volume of the kth fluid 
drop in the domain V, bounded by sk, k = 1, . . . , N .  Let dk) denote the unit normal 
to sk pointing out of particle k and let .Wk) and NCk) denote respectively the 
external force and torque on particle k. Finally let r(k) denote the position vector 
from the reference point in particle k. 

Now we can formulate the flow problem. It is to find U(X) defined in V ,  dk)(x) 
defined in V,, k = 1, . . . , N ,  Uck) and dk), k = 1 ,  .. . , N + M ,  subject to the following 
conditions: 

u(x) satisfies (2.3)-( 2.8), (4.0) 
ui = U$k)+cimjwg)r$k), x on sk ( k = N +  1, ..., N + M ) .  14-1) 
ui = UP), x on sk ( k =  1 ,  ..., N ) ,  ( 4 4  

n$k)(7ij - @) = n$k’n$%2g’(7qim - T L ~ ) ,  (4.4) 
u$:i(x) = 0, x in V, (k= 1, .. ., N ) ,  (4.5) 
7@j +fik) = 0, x in V, (k = 1, . . ., N ) ,  (4.6) 

n$)ui = n$k)uik) = n ~ & ) [ U ( i k ) + € ~ i m j ~ ~ ) r ~ k ) ] ,  x on sk ( k =  1, ..., N ) ,  (4.3) 
x on sk (k = 1 ,  . . . , N ) ,  
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In  these equations eiqj = + 1 or - 1 according as iqj is an even or odd permutation 
of 1, 2,  3 and eiqj = 0 otherwise. 

Equation (4.1), which equates the fluid velocity at the surface of arigid particle 
to that of the surface, is the no slip condition. Equation (4.2) equates the velocities 
of the fluid on the two sides of the surface of a drop and (4.3) equates their normal 
components to the normal velocity of the surface. Equation (4.4) expresses the 
continuity of the tangential component of normal stress across the surface of 
each drop. Equation (4.5) expresses incompressibility of the fluid in each drop 
and (4.6) is the Stokes equation of motion for the fluid. Equations (4.7)-(4.10) are 
the equations of motion of the drops and particles when the inertial terms are 
negligible. 

We now define the excess dissipation rate De[u, dk), UCk), dk)] by 

N + M  
- 2 5 1 fik)uik) d V - 2 [Pik) U p )  + N : % J $ ~ ) ] .  (4.1 1) 

Here D(k)[u(k)] is the dissipation rate in V, (k= 1, ..., N ) .  We can now state and 
prove the following minimum principle: 

Theorem 3. (Minimum Principle.) Let 

k = l  Vk k=N+1 

u(x) ,  u'"(x) (k = 1, ...) N ) ,  U'", W ( k )  (k = 1, ..., X + M )  

be a solution of (4.0)-(4.10) with u(x)  and u(k)(x) continuously differentiable in 
V and V, respectively. Let U(x) ,  @)(x) (k= 1,  ..., N ) ,  n(k),z;iCk) (k= 1,  ..., N + M )  
satisfy (2.3), (2.5), (2.6), (4.1), (4.2), (4.3) and (4.5) with U(x)  and U@)(z )  being 
continuous and piecewise continuously differentiable in V and V, respectively. 
Then 

(4.12) 

The inequality holds in (4.12) when U-u, U ( k ) - ~ ( k ) ,  ?P)- Uk) and ~ 3 ~ ) - - w ( ~ )  is 
not a rigid body motion. Thus inequality holds when 

[U(x), U("(x), m), G'k)] 9 [u(x),  u'k)(x), U'k), W(k)] 

if 8, is not empty or if no rigid body motion of the fluid is possible in V with 
vanishing normal derivative on the surface S,. 

Proof. Let us write 
- 

U(x)  = u(x)  +G(z), u'k)(x) = u(k)(x)+G'k)(x) (k=1,  ..., N ) ,  
- 

= UVd+ OW, dk) = o ( ~ ) + Q ( ~ )  (k= 1, ..., N + M ) .  

Then G and Gk are continuous and piecewise continuously differentiable in V and 
V, respectively for k = 1, ..., N ;  G6 = 0 on S, and niGi = 0 on S,. In  addition 
G,G(k), D(k)and6(k)satisfy (2.3), (4.1)-(4.3) and (4.5). UponsubstitutingU = u+G,  
etc., into (4.11) we obtain 

N N + M  

k = l  k = N + l  
D,[U, E'k), D k ) ,  G@)] = D,[u + G] + c D'k) [U'k) + 23k)] - 2 'c [pp'up + Npwp'] 

N + M  

k = N + l  
- 2  C, [ P ~ k ) B F ) + N ~ k ) o ~ k ) ] - 2  f ,k)(u(k)+G$k))dF' .  (4.23) 
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Now we use Lemma 1, which is applicable to u and G in V ,  and equations (2.13) 
and (2.14), which are applicable to dk) and G(k) in V,. Then (4.13) becomes 

N 

k = l  
D,[U, iw, U k ) ,  G P ]  = DJU] + 2 D(k)[U(k)] - 2 

Gi T ~ ~ [ u ]  nj dS s s,+s,+s, 

We have used the fact that the normal to Sk out of V is just - dk). 
The first term plus the next three sums are just equal to DJu,  uck), Uk), dk)] as 

we see from (4.1 1). The integrals over S,, S, and S, add up to zero by virtue of the 
boundary conditions satisfied by Gi and T ~ ~ [ u ] ,  as is shown in the proof of theorem 1. 
The integrals over s k ,  k = N + 1, . . . , N + M ,  can be rewritten as follows by using 
(4.11, 

MS-N 

k=N+1 
Now, we add -2 [F$k)8ik)+N$k)6$k)] to both sides of (4.15). Then as a 

consequence of (4.8) and (4.10) the right side of the resulting equation is zero. 
The integral over V, (k= 1, ..., N )  can be converted, with the aid of Gauss’ 
theorem, to an integral over sk. By combining this with the remaining integrals 
oversk(k=l ,  ..., N)wecanwrite(4.14)as 

C 

N 

k = l  
D,[zc, u(”, D k ) ,  a)] = Dp[u, u@), U(”, d k ) ]  + D[G] + 2 D‘k)[jj,(k)] 

- 2 $ 1 ( ~ & T ~ ~ [ u ]  - G ‘ i 7 ) ~ ~ ~ [ u ( k ) ] ) n ~ ~ ) d S .  (4.16) 

Let us consider the integrand of the integral over s k .  By successively using 

k = l  Sk 

(4.2), (4.4), (4.3) and (4.4) we can write 

(ci T ~ ~ [ u ]  - G : ~ ) T ~ ~ [ u ( ~ ) ] )  nP = G ~ ( T ~ ~ [ U ]  - T ~ ~ [ U ( ~ ) ] )  n$k) 

= Gini  ( k )  nq ( k )  n, ( k )  ( ~ ~ [ u ]  - T ~ , [ U ( ~ ) ] )  

= ( o(ik) + eimj o@r$k)) n(ik)nhkhg)(~gm[u] - T ~ , [ u ( ~ ) ] )  

= ( Qk) + cimj o@rik)) n{k)(~ti[u] - -rti[u(k)]). (4.17) 
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Now the integral over sk can be written as follows and the second integral con- 
verted to a volume integral by Gauss’ theorem 

-J e irn iw~)r$~) l  ‘ T ~ ~ [ U ( ~ ) ]  dv. (4.18) 

The last integral in (4.18) vanishes since r$t)l= Sit and eimj T~~ = 0 because T~~ is 
symmetric while eimj is antisymmetric in i and j. We use (4.6) to replace ‘ T ~ ~ , ~ [ u ( ~ ) ]  

by - f ik )  in the next to last integral in (4.18) and we find that the right side of 
(4.18) vanishes as a consequence of (4.7) and (4.9). Thus all theintegralsin (4.16) 
vanish and (4.16) becomes 

T’ k 

N 

k = l  
D e [- U , U  --(@, ?P),iP] = D J u , u ( ~ ) ,  U ( k ) ~ ( k ) ]  + D[C] + D@)[fi(lc)]. (4.19) 

Since D and Dk) are non-negative, (4.19) implies (4.12). D[E] and D(k)[E(k)] vanish 
if and only if .ii and @)represent rigid body motions. By (4.2) they must represent 
the same motion, and by (2.5) this motion vanishes if S, is not empty. If 8, is 
empty then this motion vanishes if no rigid body motion is possible in V with 
vanishing normal velocity on 8,. Thus in these cases the inequality holds in (4.12) 
provided ,u(x) + U(x)  and u(k)(x) + @)(x) for k = 1, ..., N .  This completes the 
proof of the theorem. 

This theorem contains theorem 1 as a special case, since when N = M = 0, 
DJu ,  u(@, U(k), dk)] = De[u]. Furthermore, all the conditions in the hypothesis 
then reduce to those in the hypothesis of theorem 1. 

5. A maximum principle for slow flows containing solid or fluid 
particles 

We now define a functional H[aij ,  a$$)] of a tensor aij(x) defined in V and N 
tensors #(x) defined in V,, k = 1, ... N ,  by 

We shall first show that when agj = rij[u] and ui$) = T ~ ~ [ u ( ~ ) ]  (k = 1, . . . , N ) ,  where 
u and u ( k )  are the solutions of (4.0)-(4.10), then 

H[Tii[U], Tii[U‘k’]] = DJU, u@), U(k), &)I. ( 5 4  

Thus when uij and a$$) are the stress tensors of the Stokes flow, H is equal to the 
excess dissipation rate 0,. 



Extremum principles for slow viscous flows 107 

To prove (5.2) we first observe that if uii = rij[u] the first volume integral term 
in (5.1) becomes -D[u]. Similarly, when CT$$) = ~ ~ ~ [ u ( k ) ]  the term involving inte- 
gration over V, becomes - D(k) [~(k ) ] .  Next we use (2 .5) ,  according to which u, = g, 
on XI, to write the integrand in the integral over Sl as uinirij. Then we use (2.6) 
and (2.7) to write the integrand in the integral over S, as 

hni ni rij = uq nq ni nj rij = uq nj rqj - Fq up. 
Then (5.1) becomes 

We now write the surface integral of ujnirij[u] as an integral over the entire 
boundary of V minus the integrals over S, and the sk ( k =  1, ..., N + M ) .  The 
surface integral over the boundary of V can be converted to a volume integral 
over V by using Gauss' theorem, and the integrand is ai(ujrij) = ui,i7ij+ujrij,i. 
From the symmetry of 7ij we have uj,i7ij = Q ( U , , ~ + U ~ , ~ ) T ~ ~  = eijrij = 2 , ~ ( e , ~ ) ~ .  
The term uir,j,i can be written as -u j  f j  by noting that rij,i = - f i  according to 
(2.4). Thus we can rewrite (5.3) as follows 

N 

k=l 
H [ T ~ ~ [ u ] ,  rii[u(k)]] = - D[u] - C Dk)[u(k),1 + 2 ( 2(eij)2- uj f j )  d 7 

n 

n 
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The volume integral in (5.6) can be rewritten by setting Qi = - fJk)’ ,  which 
follows from (4.6), and observing that u$.yi T ~ ~ [ U ( ~ ) ]  = 2 , ~ ( k ) ( e ~ ~ [ u ( ~ ) ] ) Q  for the same 
reasons as before. Then (5.6) becomes 
c c 

In  view of (4.7) the integrals in (5.7) proportional to Uik) cancel and by(4.9) those 
proportional to w g )  cancel. Then when (5.7) is used in (5.4), (5.4) becomes 

(5.8) 

The first integral over V in (5.8) combines with - D[u] to yield D[u]. Similarly, 
the first integral over V, combines with -D(k)[u(k)] t o  yield D(k)[u(k),l. The surface 
integral in (5.8) over sk ( k =  W +  1, ..., N + N )  can be simplified by using (4.1). 
Then (4.8) and (4.10) show that thisintegralisequal to -B’$k)U$k)-N$k)w$k). Thus 
(8) becomes 

(5.9) 

The right side of (5.9) is just DJu, 
and this proves (5.2). 

U@),, ohk)] as we see from (4.11) and (2.10) 

In  terms of H we now state and prove the following maximum principle. 
Theorem 4. (Maximum Principle.) Let 

U ( X ) ,  u‘”’(x) ( k  = 1, ..., N ) ,  U(k), W(k)  ( k  = 1, ...) N + M )  

be a solution of (4.0)-(4.10) with u(x)  and dk)(x)  continuously differentiable in V 
and VCk) respectively. Let vii(x) and v$)(x) be defined in V and V, respectively 
(k = 1, ..., N )  and be piecewise continuous and piecewise continuously differ- 
entiable and all satisfy (3.5), (3.6), (4.4), (4.6)-(4.10) and cij satisfy (2.4), (2.7) 
and (2.8). Then 

H[cij, c$)] < H [ T ~ ~ [ u ] ,  ~ ~ ~ [ d ~ ) ] ]  = De[u, dk), UCk), dk)]. (5.10) 

Inequality holds in (5.10) unless vii = T ~ ~ [ u ]  + 40 8ij and v$) = T ~ ~ [ u ( ” ) ]  + qhk)8ij, 
where qn and qhk) are constants. Furthermore qn = 0 unless 8, is absent. 

Proof. Let us set gij = T ~ ~ [ u ]  +pi j ,  v$) = T ~ ~ [ u ( ~ ) ]  +pi;) ( k  = 1, . . . , N ) .  Then pip 
and pi?) are piecewise continuous and piecewise continuously differentiable in V 
and V, respectively ( k  = 1, ..., N )  and they satisfy (3.5),  (3.6), (4.4) and (4.6)- 
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(4.10) with f j k ) ,  Fik) and Nik)replaced by zero, andpij satisfies (2.4), (2.7) and (2.8) 
with fi, pi and yi replaced by zero. Upon substituting crij = ~ ~ ~ [ u ]  +pii and 
cr$) = T ~ ~ [ u ( ~ ) ]  +pi$' into (5.1), we get 

- $&!! Sij)2 d V .  (5.11) 
Here H[T*~[U] +pi?] is defined by (3.1). 

taking account of the additional surfaces present, to get 
We now apply lemma 2 to the first term on the right-hand side of (5.10), 

H[crij, 4 ' 1  = H[T i i [U ] ]  - - (Pij - +pnn Sii)2 d v 
2P 's v 

(5.12) 

The integrals in the last sum in (5.12) are of the same forni as H [ T ~ ~ [ U ( ~ ) ]  +pi:'], 
defined by (3. I) ,  with g, = h 5 0 and the surface XI + S, + S, replaced by sk. Thus 
we can also apply lemma 2 to these terms to get 

-'f (Tii[U(k)] - $T,,[U(k)] Sii +p$) - +&A Sij)2 d V 
2p(k) V k  

" " 

Combining (5.13) with (5.12), and rearranging terms, we get 

+ 2 J uipij, a v + 2 Isl (gi - ui) nipii dfi - 2 ui nipii ds 
V IS. 

(5.14) 

We recognize the first term and the first sum on the right side of (5.14) as 
H[T~~[u],T~~[u(~)]]. Now, the second integral over V and the third sum in (5.14) 
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vanish because p i j , i  = p$$!i = 0. In addition, the integrals over S,, 8, and S, 
vanish as was shown in the proof of theorem 2. Therefore (5.14) becomes 

H [ r i j ,  o$] = H[7ij[U], ~ i j [ U ( ~ ’ ] ]  - - J (pij-+pnmSij)2dV 
2P v 

By (4.1)) we have, for Ic = N +  1, ..., N + M ,  

The right side of (5.16) is zero because pii satisfies (4.8) and (4.10) with 

j n k )  = N(ik) = 0. 

For k = 1, . . . , N we find by using (4.2)) (4.4)’ (4.3) and (4.4) again that 

n 

= Jsk ( u(ik) + eimq w$$$)) nik)pij d 8  - ( U(@) + eimq &)r$?) n$fi)&)dS. (5.17) 

The next to last integral in (5.17) is zero because pij satisfies (4.7) and (4.9) 
with fjk) = 0. The last integral in (5.17) can be rewritten, by using Gauss’ 
theorem, as 

J S k  

n 

The next to last integral in (5.18) vanishes since 
likewise vanishes, as was shown in the proof of theorem 2. 

By combining all these results we can write (5.15) as 

= 0 in 5. The last integral 
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Since all the integrals in (5.19) are non-negative, (5.19) yields (5.10). Equality 
holds in (5.10) only if all the integrals in (5.19) vanish and this happens only if 
pii = yo Sij, pi?) = dk)Sij, where qo and 4:) are constants. Because nipij = 0 on S,, 
qo = 0 if S, is not absent. This proves the theorem. 

6. Some consequences of the extremum principles 
An immediate consequence of theorem 1 is the following uniqueness theorem. 
Theorem 5. ( Uniquenessof the Stokes$ow.) Thereisin V a t  most one continuously 

differentiable Stokes flow, i.e. solution of (2.3)-(2.8), provided 8, is not empty or 
provided no rigid body motion of the fluid is possible in V with vanishing normal 
velocity on S,. 

Proof. If there were two solutions u and w then (2.16) would hold and it would 
also hold with u and w interchanged, so the equality would hold. But then, by 
theorem 1, w and u are identical. 

In exactly the same way we obtain from theorem 3 the following uniqueness 
theorem for the Stokes flows containing solid or fluid particles. 

Theorem 6. (Uniqueness of Stokes $ow containing particles.) There is in V and 
qc (k = 1, . . . , N )  at most one continuously differentiable Stokes flow and corre- 
sponding set of particle velocities and angular velocities, i.e. solution of (4.0)- 
(4.10), provided S ,  is not empty or provided no rigid body motion of the fluid is 
possible in V with vanishing normal velocity on the surface S,. 

This theorem contains theorem 5 as a special case. 
Suppose f,  the external force per unit volume, is derivable from a continuous 

(6.1) 
single valued potential 

Then theorem 1 can be reformulated as follows. 

pi = 0 and S, is absent then theorem 1 is also true with (2.16) replaced by 

f i  = a,+ 

Theorem 7. If f i  = where Q is continuous and single valued in V and if 

DCW] 3 mu]. (6.2) 

Proof. By successively using the definition of D,[w], setting f i  = Q,$, recalling 
that wi,{ = 0, using Gauss’ theorem, and using the fact that w satisfies (2.5) 
and (2.6) we obtain 

D,[W]-D[w] = -2 w,f,dV = -2 wiQ)idv = -2 (w,Q),,dV 
S V  S V  S V  

= - 2 1  a+s* Qw,n,dS = -2S~~QginidS-2Ss*QhdS.  (6.3) 

We note that the last expression in (6.3) is independent of w. We now use (6.3) in 
(2.16) to express DJw] in terms of D[w], and to express D,[u] in terms of DLu]. 
The surface integrals cancel and the result is (6.2)) which proves the theorem. 

According to theorem 7, when (6.1) holds and S, is absent the Stokes flow 
minimizes the dissipation rate in the class of continuous, piecewise continuously 
differentiable flows satisfying (2.3)) (2.5)-(2.7) with pi = 0. This shows that the 
flow is independent of the potential, since this characterization of the flow does 
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not involve the potential. Of course the corresponding pressure is dependent upon 
the potential. 

By using (6.3) in (3.10) we can reformulate theorem 2 as follows. 
Theorem 8. If fi = Q,, where Q is continuous and single valued in V and if 

pi = 0 and 8, is absent, then theorem 2 is also true with (3.10) replaced by 

It is helpful to observe that the sum of the two surface integrals in (6.4) will be 
unaffected by the addition of a constant to Q provided 

g i n i d X +  h d X  = 0. Is1 Isz 

This is a condition which must be satisfied if there is any flow u satisfying (2.3), 
(2.5) and (2.6) as we see by integrating (2.3) over V ,  applying Gauss’ theorem 
and then using (2.5) and (2.6). It expresses the fact that the net mass flux out of 
V must vanish. 

Theorem 7 can be reformulated in an interesting way by recalling that the 
rate of dissipation of energy into heat is proportional to the rate of entropy 
production. Therefore we can restate theorem 7 as follows. 

Theorem 7’ .  A continuously differentiable Stokes flow in V ,  i.e. a solution of 
(2.3)-(2.7), with pi = 0 and S, absent, has a smaller rate of entropy production 
than any continuous, piecewise continuously differentiable flow defined in V and 
satisfying (2.3), (2.5) and (2.6) provided the external force is derivable from a 
continuous single valued potential and that 8, is not empty or that no rigid body 
motion of the fluid is possible in V with vanishing normal velocity on the surface 
of V .  

This theorem is an instance of the ‘principle of the minimum rate of entropy 
production ’ which is used in irreversible thermodynamics. Our theorem shows 
that this principle does not apply if the forces are not derivable from a continuous 
single valued potential. It also shows that the principle applies to the Stokes flow, 
which is a slow, slowly changing flow, and not to  the solution of the unsteady 
non-linear Navier-Stokes equation. This is in accordance with the belief that the 
principle applies only to those steady motions which represent small departures 
from equilibrium. 

For forces derivable from a potential we can also reformulate theorems 3 and 4 
as follows. 

Theorem 9. Suppose fi = Q, in V and f i k )  = Q, , in Vk) (k = 1, . . . , N )  where Q is 
continuous and single valued in V + X Vk), pi = 0, X, is absent and 

F\$) = / s k ~ n \ k ) d s  ( k = ~ +  1, ..., N + M ) ,  

N%)= / s k ~ e i m j r j * ) n \ & ) ~ ~ ~  ( I % = N +  1, ..., N + M ) .  

(6.6) 

(6.7) 
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Then theorem 3 is true with (4.12) replaced by 

113 

(6.8) 

and theorem 4 is true with (5.10) replaced by 

(6.9) 
k=l 

This theorem enables us to obtain upper and lower bounds on the total dissipation 
rate of the fluid when the hypotheses are satisfied. The hypotheses (6.6) and (6.7) 
mean that the external force and torque on each solid particle are equal to the 
buoyant force and torque exerted on it by the fluid. Thus the solid particles must 
be neutrally buoyant. 

An interesting application of theorem 1 is obtained by noting that a solution of 
the Navier-Stokes equation is a Stokes flow if it  satisfies the condition 

au /a t+(u .v )u  = 0. 

This is the case for steady laminar flow in a pipe or between parallel planes, which 
can occur if the only forces are potential forces. Thus in these cases the Navier- 
Stokes flow is also the Stokes flow u(x ) .  Consequently by theorem 1 these laminar 
flows have a smaller dissipationrate than any other flows, such as turbulent ones, 
having the same boundary values. Now the dissipation rate in a finite length of 
pipe is equal to the pressure drop between the ends of the pipe multiplied by the 
flux. The laminar flow and any other flows having the same boundary values have 
the same flux and therefore the laminar flow has the smallest pressure drop. Let 
us define the resistance coefficient for any flow as the ratio of the pressure drop per 
unit length to the flux. Then we obtain the following result, due to Thomas (1942). 

Theorem 10. Parallel or laminar flow in a straight pipe has a smaller resistance 
coefficient than any other steady or unsteady incompressible flow having the 
same velocity distribution over the ends and walls of the pipe, provided any 
external forces acting derive from a continuous single valued potential. 

Another useful consequence of theorem 1 is obtained by using for w the steady 
solution of the Navier-Stokes equations satisfying the same boundary conditions 
as the Stokes flow u, or any unsteady solution satisfying the same conditions. 
This yields 

Theorem 11. Let u be the continuously differentiable Stokes flow in B satisfying 
(2.3)-(2.8). Let w be a continuous piecewise continuously differentiable steady or 
unsteady solution of the Navier-Stokes equation in V satisfying (2.3) and (2.5)- 

(2.8). Then DeCWl 2 DJUI. (6.10) 

The inequality holds in (6.10) if w(x)  $: u ( x )  provided S, is not empty or provided 
no rigid body motion of the fluid is possible in V with vanishing normal velocity 
on S,. 

8 Fluid Mech. 30 
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When f i  = 

Theorem 12. Iffi = 

theorem 7 yields 
where SZ is continuous and single valued in V and if 

D[w] 2 D[u].  (6.11) 

Next let us consider the steady motion of an object through a fluid. Any 
external force acting on the fluid is assumed to be derivable from a continuous 
single valued potential. In  this case the dissipation rate is equal to the rate at 
which the object does work on the fluid. If the motion is purely translational this 
rate of work is the product of the speed and the drag force. If the motion is purely 
rotational, the rate of work is the product of the angular speed and the resistive 
torque, i.e. the component in the direction of the angular velocity, of the torque 
exerted by the object on the fluid. From theorem 12 we obtain 

Theorem 13. The Stokes flows yield a smaller drag on a body in translation 
and a smaller resistive torque on a body in rotation in an incompressible fluid than 
do the corresponding Navier-Stokes flows, provided pi = 0, X, is absent and any 
external forces on the fluid derive from a continuous single valued potential. 

A special case of this result is given by Lamb (1945, p. 619) for the torque on 
a sphere in a concentric spherical container. The fact that the Oseen correctjon 
to the Stokes formula for the drag on a rigid sphere is positive is a consequence 
of theorem 13. So is the fact that the Brenner & Cox (1963) correction to the 
Stokes drag on an arbitrary object is positive. This theorem also applies to the 
drag on a gas bubble, provided the shape of the bubble is prescribed. Thus Moore's 
(1959) calculation of the Stokes drag on a spherical bubble provides a lower 
bound on the Navier-Stokes drag. 

In  the last three theorems results obtainable from the Stokes flow are com- 
pared with those given by the Navier-Stokes flow. A different type of application 
of the extremum principles is to obtain bounds on the dissipation rate or excess 
dissipation rate of the Stokes flow itself. This is important for those cases in which 
the Stokes flow has not been determined. It is most valuable when the dissipation 
rate has additional physical significance, such as when it is proportional to the 
resistive torque on a body in steady rotation, the flow resistance in a pipe or the 
drag on a body in steady translation. Some such applications have been made by 
Hill & Power (1956). 

It has been pointed out to us by H. Brenner that the extremum principles 
can also be used to obtain bounds on all the elements of the Stokes trans- 
lational, rotational and coupling resistance matrices, which relate the force 
and torque on an arbitrary rigid body to its linear and angular velocities 
(Happel & Brenner 1965, chapter 5).  This can be done by obtaining bounds 
on the drag for six different directions of translational motion, and bounds on 
the torque for six different axes of rotational motion and then finding bounds 
on the dissipation rate for an appropriate number of cases of simultaneous 
translation and rotation. We shall not give any examples of such applications. 
Instead, in $ 9 7  and 8 we shall give applications of our new extremum prin- 
ciples for flows containing particles to obtain bounds on the effective viscosity 
and sedimentation velocity of suspensions, 

pi = 0 and S, is absent then theorem 11 is true with (6.10) replaced by 
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All the previous results can be applied to spatially periodic flows by choosing 
as the domain V one period cell of the flow. The comparison flows must also have 
the same periodicity. Then all relevant surface integrals over the surface of a cell 
vanish by periodicity. 

7. Viscosity of a suspension 
By a suspension we mean a viscous fluid containing a collection of solid 

particles, droplets of a different liquid, or gas bubbles. A large-scale motion of a 
suspension is a motion with a scale large compared to the particle size and to the 
interparticle spacing. For such motions of an isotropic suspension it often suffices 
to treat the suspension as a uniform fluid having some density ps and some 
viscosity coefficient ,us?. For a nonisotropic suspension ,us depends upon the 
direction of shear. We call ps and ps the density and viscosity of the suspension. 
Our aim is to determinep,. In  doing so we assume that there are no external 
forces or torques acting so that f = f(,) = 0 and kk) = N(k) = 0. 

We define ,us as the viscosity of that uniform incompressible fluid which 
dissipates energy at the same rate as the suspension when both the uniform fluid 
and the suspension occupy identical domains V and satisfy the same boundary 
conditions. To eliminate the dependence of p, on the size and shape of V we let 
V become infinite and require only that the average energy dissipation rate per 
unit volume be the same for the two flows. For simplicity we choose the boundary 
condition on the surface 8, of V to be 

ui = uiixi, x on fll; uii = 0, a..  23 = uji. (7 .1 )  

Here aii is a constant. When V is filled with a uniform fluid the resulting flow is 
a uniform shear flow with constant strain rate eii = aii. The dissipation rate per 
unit volume is 2,u, aii aij. When Pis filled with the suspension the dissipation rate 
is denoted by D. Then with v denoting the volume of V ,  our definition yields 

When the motion of the suspension is a Stokes flow, i.e. a solution of (4.0)-(4.10), 
our extremum principles enable us to obtain upper and lower bounds on D. Upon 
using them in (7 .2 )  we get upper and lower bounds on ,us, 

In  order to use (7.3) to obtain explicit bounds on ,us, we must find admissible 
tensors crii and d$ and motions C, C(,), @) and iP). 

We shall now describe one way of constructing admissible functions. First we 
determine the distance from the reference point in the kth particle to the nearest 
reference point of any other particle, and denote it by 2b,. Then for each k we 
draw a sphere of radius b, about the reference point of particle k. By construction 

t H. Brenner has pointed out that this :is :so only at sufficiently low concentrations. 
For higher concentrations the state of stress cannot generally be described by using a 
single coefficient. 

8-2 
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these spheres do not overlap. We assume that each particle is entirely inside the 
sphere about its reference point. In  the region outside all the spheres we define 

ui = aijxj ,  (7.4) 

cr-. a = 2paii. (7.5) 

ii and gii by - 

From (7.4) we find that the dissipation rate per unit volume in this region is 
2paij aij. The volume of this region is v - C 47rbi/3 where the sum is taken over all 

the particles in V ,  provided we ignore the parts of spheres which lie outside V.  
The sum of these parts is proportional to the area of the surface of V and therefore 
it will vanish compared to v in the limit of v becoming infinite, which justifies 
neglecting it. We have not yet defined the flow inside the kth sphere, but we shall 
denote by Dck) its dissipation rate. Then we have 

k 

D[U, Ti('), V k ) ,  @)I = - C 47rbQ3) + C (7.6) 
k k 

Before using (7.6) in (7 .3 ) ,  let us evaluate H[gij ,  .-$)I by using (7.5) in the region 
outside the spheres. Prom (5.1) we find 

n 

Here we have introduced H(k) which is the contribution to H from B,, the interior 
of the sphere containing the kth particle. It has different forms for fluid and solid 
particles, which are the following: 

( k = 1 ,  ..., N ) ,  (7.8) 

In  (7.7) gi is the ith component of the prescribed velocity on the outer surface 
of V ,  which is a, x,. By using this value in the surface integral in (7 .7 )  and applying 
Gauss' theorem we can evaluate the integral as follows: 

4paij Is1 gi ni clS = 4paij  a,, xt nj dS = 4paii ait 1 x,, d V s, V 

= 4paij a,, 8, v = 4paij  aij v. (7.10) 
When (7.10) is used in (7.7),  (7 .7 )  becomes 

We now substitute (7.6) and (7.11) in (7.3) to obtain 

In defining gij inside the sphere of radius bk around particle k, we must make 
niuii continuous across the spherical surface, where ni is the normal to this 
surface so n, gii = 2pni aij on dk)  = b,. Similarly, in defining U inside the sphere, 



Extremum principles for  slow viscous $ows 117 

we must make ?i continuous and therefore ?i = aii xj on the surface = b,. The 
best bounds obtainable from (7.12) are those for which H@) is as large as possible 
and DCk) as small as possible, subject to the boundary conditions just mentioned. 
According to  theorem 7, the smallest value of DCk) is given by the solution of the 
slow motion problem (4.0)-(4.10) inside the sphere of radius bk with ;El = aii xi on 
its surface. Similarly, by theorem 8 the largest value of HCk) is given by the 
solution of (4.0)-(4.10) inside B, with n j ~ i j [ u ]  = 2pniaii on its surface. These 
problems are simpler than the original problem because each sphere contains only 
one particle. Of course poorer bounds can be obtained more easily by using any 
admissible functions rather than solving these problems. 

One case in which these problems can be solved is that of spherical particles, 
which we shall now consider. Let D(u, b) = min DCk) and H(u ,  b )  = max El(,) when 
the sphere of radius b surrounds a concentric spherical particle of radius u. Then 
D(u, b) and H(u ,  b) are determined by the solutions of the two slow-motion 
problems we have just described. They are given by (A 12) of appendix A and 
(B4)  of appendix B, respectively. When we use D(u, 6 )  and H(u, b )  in (7.12), we 
can express the limits in terms of the number density g,(u, b)  of particles of radius 
a with nearest neighbour at  distance 2b. Since g,(u, b) = 0 forb < u, (7.12) becomes 

.. 

b)dbdu.  (7.13) 

For low concentration of particles, gl(u, b)  is practically zero unless u 6 b. Then 
H(u,  b) and D(u, b) in the integrands of (7.13), can be expanded in powers of 
h = u/b to yield 

-1 (57+2) 3j:g,(u,b)dbda+... 471.a3 6 P s  - - 1  
2 ( l + r )  0 P 

From the definition of g,(a, b), the integrals appearing in (7.14) represent the 
total volume of particles per unit volume of fluid, which is just the volume con- 
centration c. Noting that the first term is the same on both sides of the inequality 

(7.15) 

The result (7.15) agrees with that obtained by Taylor (1932) for a low concentra- 
tion suspension of fluid spheres. If we let 7 -+ a, it  becomes Einstein’s (1906) 
result for a low concentration suspension of solid spheres. Our derivation, which 
applies to any distribution of spheres, is actually a proof of (7.15), whereas the 
previous derivations were approximate calculations and not proofs. 

t For particles of any shape we can show that pS/p = 1 + Kc + . . . where K depends 
upon 7 and the shape. 
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If we now specialize to the case of identical spherical particles of radius a, then 
we set gl(a’, b )  = g(b) 6(a’- a )  and (7.13) becomes 

The function g(b) is determined by the spatial distribution of particles. For 
independent point particles of number density n, g is given by the Poisson 

(7.17) 
distribution 

If the particles are small compared to their average separation, this should be a 
good approximation to g(b) for b 9 a, On the other hand, if the particles are 
situated on a lattice of minimum spacing 2b and number density n, then 

g(b) = 16rnb2 e-32nb3/3. 

g(b’) = n8(b‘- b). (7.18) 

The two distributions (7.17) and (7.18) represent opposite extremes of the possible 
distributions. For a simple cubic lattice n = 1/8b3 and (7.16) becomes, when 
(7.18) is used in it, 

(7.19) 

By substituting into (7.19) the values of D(a, b )  and H(a ,  b )  given in appendices 
A and B respectively, we get the following upper and lower bounds on pS/p for 
a simple cubic lattice of spheres: 

(7.20) nh3[5( 1 - 7) h7 + (57 + 2 ) ]  k < l -  
,u 3[4(1 -7 )h10+5(57-2 )h7-427h5+5(57+2)h3-4 (1+~) ] ’  

nh3[ - SO( 1 - 7) h7 + 19(2 + 57)] 
&1u., 1+ 
P 6[ - 48( 1 - 7)hlo - 40(2 - 57) h7 - 3367h5 + 45(2 + 57) h3 + 38( 1 + 7)] ’ 

(7.21) 

Here h = a/b  and 7 = p1/,u, where ,ul is the viscosity coefficient of the fluid inside 
the spheres. Graphs of these bounds are shown in figure 1 as functions of nh3/6 
for several values of 7. 

The volume concentration of particles for the cubic lattice is given by 

c = 4ra3/3(8b3) = 7rh3/6. 

Thus c varies from z0ro at h = 0 to n-16 at h = 1, when neighbouring spheres just 
touch. For low concentration, c < 1, (7.20) and (7.21) can be expanded to yield 

(7.22) 
For high concentration, c-7.r/6 4 1, (7.18) and (7.19) become 

7l 771 
1+---+ ... 

6 1757 
(7.23) 
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FIGURE 1. Upper and lower bounds on pJ,u as a function of concentration c for a suspension 
of spherical particles in an incompressible fluid. All particles have radius a and their 
centres are located on a simple cubic lattice of spacing 2b. The bounds are given by 
equations (7.20) and (7.21) in which h = a/b and 7 = pJp, where ,u1 is the viscosity of 
the fluid of the particles and ,u is the viscosity of the surrounding fluid. The case 9 = co 
corresponds to rigid particles and 9 = 0 to gas bubbles. The concentration c = nha/6 
varies from zero to "16 when the spheres touch each other. 

8. Sedimentation velocity 
Consider a collection of particles settling or rising in a viscous fluid under the 

influence of gravity. It is convenient to introduce an average particle velocity 
U which we call the settling or sedimentation velocity. To define U we consider 
q, the time rate of change of potential energy W of the fluid and particles in some 
domain V .  It is given by w,= ( m k - p ~ )  g ~ p ) .  

Here mk, V, and ULk) denote the mass, volume and vertical velocity of the centroid 
of particle k, p is the fluid density and g is the acceleration of gravity. The sum is 
over all particles in the domain V .  Now we define U as that single velocity which 
would yield the same rate of change of W .  However, to  eliminate the dependence 
of U upon the size and shape of V ,  we consider the limit as V becomes infinite. 
Thus we define U by 

(8.1) 
k 

(8.2) % x (mk - Pv,) ULk) 
~ = lim k U =  lim 

r + m  C ( m k - ~ V , )  v+mgC(mk-PGJk)' 
k 1; 
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In  order to determine U we observe that in a Stokes flow of a suspension of 
is equal to minus the rate of fluid drops, the rate of change of potential energy 

energy dissipation 
N 

Furthermore, suppose u is given on the boundary Sl of V ,  so that 8, and S, are 
absent, and that all the particles are fluid drops. Then from (4.11) we have 

N 

k = l  
De[u, u (k ) ,  U(k), d k ) ]  = D [ u ]  + c D(k)[U(k)] + 2%. (8.4) 

De[u, dk), d k ) ]  = w t .  ( 8 .5 )  

Now (8.3) and (8.4) yield 

By combining (8.2) and (8.5) we obtain 

It is convenient to rewrite (8.6) in terms of the volume v of V in the form 

Then from the minimum principle, theorem 3, we have 

Thus (8.8) yields an upper or lower bound on U according as the coefficient of U is 
positive or negative. 

a(”,, is(k) to use in (8.8), we proceed as 
in 0 7. Thus for each k we introduce a sphere of radius b, around the centroid of 
particle k, where b, is half the distance to the nearest particle centroid. Then we 
set ZL = 0 outside all these spheres and denote by DLk) the excess dissipation rate of 
the still undefined flow within the sphere of radius b,. In  terms of DLk), (8.8) 

1 1 
becomes 

(8.9) 

The smallest value of the right side of (8.9) is obtained by choosing the Stokes flow 
as the flow within the sphere of radius b,. Since t must be continuous, this flow 
must satisfy the condition U = 0 at r = b,. Its determination is simpler than 
that of the original flow because this sphere contains only one particle. 

When the particle is a sphere of radius a, the Stokes flow within the concentric 
sphere of radius b can be determined explicitly. This is done in appendix C and 
the excess dissipation rate for it, denoted by D,(a, b ) ,  is found. It is given by (C 13). 
We now assume that the particles are spheres and take the limit in (8.9) to obtain 

To construct an admissible motion, ZL, 

g U lim - 2 (mk - p&) < lim - D$). 
t+mV k * m u  k 
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Here gl(a, b)  is the number density of particles of radius a with nearest neighbour 
at distance 2b, g(a) is the number density of particles of radius a and pl(a)  is the 
density of a particle of radius a. 

For a simple cubic lattice of identical particles of radius a and spacing 2b, 

(8.10) becomes Qnga3(pl - p )  U < D,(a, b). (8.11) 

By using (C 13) of appendix C in (8.11) we obtain 

(1  [4(1-7) h3+ 3(2 -7) h2 + 3(2 +?) h + 4(1+7)] . (8.12) 
4[3(1-7)h5+(2+37)] 

C 

FI~WRE 2. Lower bounds on U/U, as a function of concentration c for a suspension of 
spherical particles in an incompressible fluid. All particles have radius a and their centres 
are located on a simple cubic lattice of spacing 2b. The bounds are given by equation (8.12) 
in which h = a/b and 7 = pJp, where pI is the viscosity of the fluid in the particles and 
p is the viscosity of the surrounding fluid. The case 7 = 00 corresponds to rigid particles 
and 7 = 0 to gas bubbles. The concentration c = nh3/6 varies from zero to 7r/6 when the 
spheres touch each other. 

Here U, is the terminal velocity of a single liquid sphere of radius a and density p1 
falling in a liquid of density p .  It is given by 

(8.13) 

The minus sign in the definition of U, occurs because upward velocity is positive. 
This sign is responsible for the reversal of the inequality in going from (8.11) to 
(8.12). From (8.12) we find that U has the same sign as U,. Graphs of the lower 
bound (8.12) are shown in figure 2 as a function of nh3/6 for several values of 7. 

When the spheres just touch, h = 1 and the lower bound in (8.12) is zero. When 
his  small, and the concentration c = n.rh3/6 is introduced, the lower bound becomes 

(8.14) 

The research for this paper was supported in part by the National Science 
Foundation under contract no. GP-5020. 
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Appendix A. Slow shear flow of two concentric liquid spheres with 
surface velocity prescribed 

Consider an incompressible liquid sphere of radius b and viscosity coefficient 
,u containing a concentric incompressible liquid sphere of radius a < b and 
viscosity coefficient pl. We wish to find the slow steady shear flow of these liquids 
due to a prescribed velocity distribution at the outer boundary r = b.  The cases 
in which the inner sphere is a solid or a vacuum are included as the limiting cases 
pl\p = co and p l / p  = 0 respectively. At the outer boundary we require that 

ui = aijxj ,  r = 6.  (A 1) 

Here ail is a constant tensor satisfying 

aij = aii; aii = 0. (A 2) 

The equations for the determination of u and p are: 

ui,i = 0, r < by (A 3) 

pAui-p,$ = 0, a < r < by  (A 4) 

,ulAui-p,i = 0, 0 < r < a. (A 5) 

At r = a, ui must be continuous, its radial component must vanish, the tangential 
components of normal stress, nirij, must be continuous and u must be continuous 
for 0 6 r 6 b. In  addition, the over-all translational and rotational velocities of 
the inner spherical surface must be chosen so that there is no net force or torque 
on that surface. 

We have solved (A3)-(A5) for u and p subject to (A l), (A2)  and the above 
continuity conditions by using the method described by Lamb (1945). In  doing 
so we assumed that the inner spherical surface did not move, in view of the 
symmetry of (A 1) and (A2).  Our solution confirms this, since it yields no net 
force or torque on the fluid in r < a. The results are 
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Here, h = a/b, 7 = pl/p, po is an arbitrary constant, r = 1x1, n, = xi/. is the ith 
component of a unit vector and the other quantities are defined by 

$1(A; 7) = -2[20(2-57)h7+847h5- 19(1+7)], 

~ ( h ;  7) = 8 ~ 5 [ 5 7 ~ 2 -  ( 2  + 5711, 
$3(h; 7) = ~ 1 6 ~ 5 ( 1 - 7 )  - 1971, 

$4(h; 7) = fr[80h7(l-7)- 19(2+57)], 

To evaluate the dissipation rate D(a, b )  for this flow, we first convert the volume 
integrals defining D to the surface integral 

> 

This equation statesthat the dissipation rate is equal to the power supplied at the 
outer surface r = b. We now use (A 7) and (A 9) to evaluate the integrand in (1 1)  
at r = b and then integrate to obtain 

Appendix B. Slow shear flow of two concentric liquid spheres with 
normal stress prescribed 

We now reconsider the problem of appendix A with the boundary condition 

njrij[u.] = 2pniaij, r = b. (B 1) 
(A 1) replaced by 

All the other conditions of the problem are the same. Thus the normal stress is 
prescribed on the outer surface instead of the velocity. 

We have solved this problem by the same method as before. Again we assumed 
that the interface r = a does not move and verified that the resulting solution 
yields no net force or torque on the fluid inside this surface. The results are given 
by (A 6)-(A 9) where the definitions in (A 10) are replaced by 

To compute H(a,  b)  we make use of (5.2). In  view of the fact that 7ij is the stress 
tensor of a Stokes flow, (5.2) applies and shows that H(a ,  b )  equals minus the 
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dissipation rate because Fc = 0 and 8, is absent. Then we use the equality of the 
dissipation rate and the power supplied a t  the surface to write 

H(a ,  b)  = - ui rij[u] ni d X .  (B 3)  
L = b  

Upon using (A 7)  and (A 9 )  together with (B 2 )  we obtain 
- 8npaifaij b3[160(1 - 7) /I1'- 200(2 - 57) A'- 16807A5 

.~ + 130(2+57)A3+ 190(1+7)] H(a ,b)  = -  
15[ - 4 q 1 - 7 )  A1"- 40(2 - 57) A'- 3367A5+ 45(2 + 57) A3+ 38(1+7)] 

* 

Appendix C. Slow uniform flow of two concentric liquid spheres under 
gravity with zero surface velocity 

We now wish to consider the slow steady flow of the two liquids described in 
appendix A satisfying the following equations: 

Ui,, = 0, r < b, (C 1 )  

p A ~ ~ - p , ~  = pgSi3, a < r < b, (C 2) 

p1Aui--p,, = plg8i3, 0 < r < a. (C 3)  

In  (C 2) and (C 3)  the inhomogeneous terms represent gravitational forces acting 
in the negative z direction, where p and p1 are the densities of the two liquids and 
g is the acceleration of gravity. 

At the outer boundary we require that 

ui = 0, r = b. (C 4)  
At r = a, ui and the tangential component of normal stress nirii must be con- 
tinuous. In addition the radial component of ui must satisfy 

niui = Un,, r = a, (C 5) 
where the over-all translational speed U is to be determined from the force balance 
equation 

JrGa - P1 ssi3 + ri j [ufl = O .  (C 6) 

In  (C 6 ) ,  u+ is the velocity of the fluid in a < r < b. 
We have solved this problem by the same method as before, under the assump- 

tion that there is no over-all rotational velocity of the inner sphere. We have 
verified that the resulting solution yields no net torque on the fluid inside this 
surface. The results are 
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Here h and 7 are defined as before and the other quantities are given by 

# ( A )  = 3(3h5- 5h2+ 2), 

#,(A; 7) = 3[3(2-37)h5+57h3+4(1+7)] ,  

#2(h; 7) = 6h3[37h2- ( 2  + 37)], 
4 3 ( ~ ;  7) = 3[3(7 - 1) h5- (2 + 3711, 

7) = 3[(7 - 1) h3- 71, 
A(A; 7) = 3( 1 - [4( 1 - 7) h3+ 3(2 - 7) h2 + 3(2 +7) h + 4( 1 + q)] 

These results agree with those given by Happel & Brenner (1965, pp. 130-3). 

defined by (4.11), and obtain 
From (C 7)-(C 12) we can compute D(a, b), the generalized dissipation rate, 

6 ~ g ~ a ~ ( p , - p ) ~  (1 -A)’[4(1-7) h3+3(2-7)h2+3(2+q)h+4(1 +q)] D(n,b) = 27~[3(7- 1)h5-(2+3q)J 
(C 13) 
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